
Controlling bubbles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 S415

(http://iopscience.iop.org/0953-8984/15/1/357)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) S415–S420 PII: S0953-8984(03)55141-4

Controlling bubbles

Detlef Lohse and Andrea Prosperetti1

Department of Applied Physics and J M Burgers Centre for Fluid Dynamics,
University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

E-mail: lohse@tn.utwente.nl

Received 23 October 2002
Published 16 December 2002
Online at stacks.iop.org/JPhysCM/15/S415

Abstract
In this short overview we report on our ongoing work on the dynamics of bubbles
in various flows. Three different situations are explored: the competition
between acoustic and hydrodynamics forces in a vertical pipe (Rensen J,
Bosman D, Magnaudet J, Ohl C D, Prosperetti A, Tögel R, Versluis M and
Lohse D 2001 Phys. Rev. Lett. 86 4819), a rising bubble on which shape
oscillations have been induced (de Vries J, Luther S and Lohse D 2002
Eur. J. Phys. B 29 503), and a bubble in a rotating horizontal cylinder. Whereas
for the first two situations the standard bubble force models (Magnaudet J
and Eames I 2000 Annu. Rev. Fluid Mech. 32 659) are consistent with our
measurements, modifications for the lift force model seem to be required in the
last case.

1. Introduction

It is often desirable to control the motion of bubbles in flows. Examples include the application
of bubbles in microfluidics for pumping and efficient mixing. Another example is bubbles in a
medical context. While bubbles have long been used for ultrasound diagnostics [4], the focus
now shifts towards their possible use in therapy, where they can act e.g. as vectors for directed
drug delivery and gene transfection into living cells. It has been shown that the permeability of
cell walls for large molecules (both drugs and genes) is dramatically increased in the presence
of ultrasound and microbubbles [5]. As ultrasound can be focused onto specific areas and
depths in the body, a localized therapy both through drug delivery and gene transfection may
become possible, once the bubble motion can be controlled. A third example from application
is two-phase flow in process technology, where the macroscopic flow behaviour as well as
various gas–liquid exchange processes depend on bubble sizes and spatial distribution, which
are in their turn affected by hydrodynamic forces.

A necessary condition for all these applications as well as many others is the understanding
of the forces acting on bubbles. While some of these forces, such as buoyancy, are trivial,
1 Permanent address: Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218,
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others are imperfectly understood. This in particular holds for the lift force: usually, it is
assumed that the lift force coefficient CL is constant for large Reynolds numbers, namely,
CL = 1/2 [3]. However, some experiments [6] suggest much larger values and a fourth-root
dependence on the local vorticity.

It is therefore important to test the existing bubble force models against well-controlled
experiments in order to resolve these and other uncertainties. In this short overview, we report
on ongoing work and present three situations which are suited for this purpose (section 3). But
first the bubble forces are introduced in section 2. Section 4 presents conclusions and gives an
outlook on the consequences of the bubble forces for bubbly turbulence.

2. Forces on bubbles

An excellent recent summary on the present understanding of the forces on bubbles is given
by Magnaudet and Eames [3]. An older standard reference is the book by Clift et al [7]. For
a spherical bubble of radius RB and volume VB in a flow field U(x, t) of constant density ρl

these forces are [3]: the buoyancy force FB = ρl VBg, the drag force

FD = 1
2ρl CDπ R2

B |U − ẋB|(U − ẋB), (1)

the lift force

FL = CLρl VB(U − ẋB) × (∇ × U), (2)

and the sum of added mass and inertial force

FA = ρl(CM + 1)VB
DU

Dt
− ρlCM VB ẋB. (3)

Here xB(t) is the position of the bubble and CD , CL , and CM are the drag, lift, and
added mass coefficients, respectively. The drag coefficient can be modelled as [3] CD =
16
Re {1 +

[
8

Re + 1
2 (1 + 3.315Re−1/2)

]−1}; the Reynolds number is Re = 2RB |U − ẋB |/ν. The
added mass coefficient is CM = 1/2 independently of Re [3]. The lift coefficient is the most
controversial one. Typically it is assumed that CL = 1/2, which holds for inviscid weak shear
flow [3], but the aim of our work is to carefully test this assumption and equation (2) through
experiment. Finally, there is the Basset history force, which however only contributes under
certain conditions [3].

Newton’s second law requires
∑

F = FB + FD(xB , ẋB) + FL(xB, ẋB) + FA(xB, ẍB) = d

dt
(ρg VB ẋB) ≈ 0. (4)

The last approximation holds as the gas density ρg is much smaller than the liquid density ρl .
It should be noted that, in a general flow field, the liquid velocity U(x, t) will vary over the

region occupied by the bubble. In writing the previous expressions we have assumed that any
such variation is small enough to be negligible, so U can be evaluated at the bubble position
xB . With this specification, equation (4) is a second-order ODE for the bubble path in the flow
field U(x, t) which can be solved straightforwardly. In the next section we will study three
examples and compare the bubble trajectories with experimental results.

3. Exploring three different flow situations

3.1. Competition between acoustic and hydrodynamics forces in a vertical pipe

The first example that we want to study is one in which we let the above hydrodynamic forces on
a bubble in a vertical diffuser compete with an acoustic force; see [1] for the full experimental
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Figure 1. Left: the set-up used to study the competition between hydrodynamic and acoustic forces
(section 3.1). The pressure antinode is at the very centre of the spherical flask. The relevant forces
on the bubble are drawn in. Right: the force balance for a bubble in a rotating horizontal cylinder
(section 3.3).

set-up and figure 1 for a sketch of the test section. The acoustic force originates from a standing
acoustic field:

Pacoustic(x, t) = Pa
sin(k

√
r2 + z2)

k
√

r2 + z2
sin(2π f t), (5)

which is generated by some piezos. Here, Pa is the sound wave amplitude, f = 20 kHz the
resonance frequency, k the corresponding wavevector, r the radial distance from the centreline
of the diffuser, and z the height, measured from the plane with the pressure antinode. The
acoustic force acting on the bubble in this situation—the so-called primary Bjerknes force—is

FB J (x, t) = −VB ∇Pacoustic(x, t). (6)

The (downward) velocity in the diffuser is approximately given by

U(r, z) = −2Q

π R2
di f f (z)

(
1 − r2

R2
di f f (z)

)
, (7)

where Rdi f f (z) is the radius of the diffuser at height z and Q the volume flow rate. The
resulting experimental trajectory for a R0 = 200 µm bubble is shown in figure 2: the bubble
spirals in an r–z plane, either inwards or outwards, depending on the control parameters Q
and Pa .

For the theoretical description, the Bjerknes force (6) is added to the above force balance (4)
and the ODE is integrated. The resulting trajectory is shown in the same figure (figure 2).
Again, it is a spiral with a similar spiralling rate (about 0.38 Hz in this case) and damping
constant. The physics of the force competition is as follows (see figure 1, left). At ‘1’ the
Bjerknes force is most relevant and drives the bubble away from the centre as the bubble is
larger than the resonance radius. At ‘2’ buoyancy takes over. At ‘3’ the lift force becomes
stronger than the acoustic force and pushes the bubble back to the centre. Finally, at ‘4’ the
drag pulls the bubble back to the centre where the Bjerknes force again takes over. The final
result is a spiralling trajectory.

Unfortunately, in our experiment [1] the precision in measuring R0 and Pa was too low to
allow for a real test of the various force model expressions above. All that can be said is that,
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Figure 2. Left: experimental trajectory r(t) versus z(t) for Q = 10−5 m3 s−1, Pa ≈ 4 × 103 Pa,
and R0 = 200 µm. The data are obtained with a digital camera operated at 25 Hz. The spiral
is inwards. Right: the corresponding theoretical trajectory which is also an inwards spiral. (This
figure was taken from [1].)

Figure 3. Left: experimental axes a and b (solid and dashed curves) and c (dotted curve) for a
rising bubble before, while, and after hitting a thin wire. For t < 10 ms the bubble axes are constant
within experimental errors. At t = −7.5 ms the interaction between the bubble and the hot-film
probe starts. At t = 0 s the bubble detaches from the hot-film probe and its axes oscillate. The
data are extracted from a high-speed digital video; the frame rate is 2 kHz. Right: the experimental
(solid curve) and numerically calculated (dashed curve) acceleration of the bubble. (This figure
was taken from [2].)

with those expressions, the experimental and theoretical results are consistent. More work to
improve on the precision is in progress.

3.2. Forces on a rising shape-oscillating bubble

The second example is that of a rising bubble (with an ambient radius of R0 = 1.2 mm) in still
water which hits a 74 µm diameter wire. The collision induces shape oscillations, resulting in
an oscillation of the bubble rise velocity (see [2] and figure 3).
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Figure 4. Inwards-spiralling bubble trajectories for a bubble in a horizontally rotating cylinder.
RB = 5 × 10−4 m, ω = 100 s−1, ρl = 1000 kg m−3. In the left picture we have ν = 10−6 m2 s−1

and thus Reω = 4.17; two different trajectories are shown. In the right picture ν = 10−4 m2 s−1

and thus Reω = 0.0417.

For the theoretical description, as the water is still, we only have to consider the added
mass force, the drag, and the buoyancy in the balance equation (4); the lift is zero. However,
due to the shape oscillations, the added mass force and the drag force also oscillate. In [2] we
show how to extend the force models correspondingly. The main result is that the rise velocity
fluctuations originate from the oscillations in the added mass, not from those in the drag. A
comparison between the experimental and the theoretical acceleration is shown in figure 3,
right.

The conclusion from [2] again is that the existing force models are consistent with the
experimental observation. However, for a detailed comparison, the precision of the data is
again not high enough. A particular problem is that the bubble has already left the camera field
of view just 30 ms after the collision, so no long-time behaviour could be studied. Moreover,
the shape oscillations obviously complicate the checking of the force balances. Finally, the
particularly controversial lift force is not relevant in this set-up.

3.3. Forces on a bubble in a rotating horizontal cylinder

So we move on to yet another geometry, namely a bubble in a horizontal cylinder rotating
with angular velocity ω as previously studied in [8]. The local liquid velocity is then given
by U(r) = ωreφ . With this velocity field, the above force balance (4) is straightforwardly
integrated. Examples of bubble trajectories are shown in figure 4. The advantage of this set-up
is that the bubble approaches an equilibrium position which should be measurable with a higher
precision than a trajectory. The force balance at the equilibrium position is shown in figure 1,
right part. The equilibrium position has the cylindrical coordinates

tan φe = 2(2CL − CM − 1)Reω = −Reω (8)

for CL = CM = 1/2 and

re = − g sin φe

ω2(2CL − CM − 1)
= 2g

ω2
sin φe (9)

for CL = CM = 1/2. Here, Reω ≡ R2
Bω/(6ν). Expressions (8), (9) allow for a direct

measurement of 2CL − CM − 1. Corresponding experiments are currently under way in our
group. They will we hope enable us to precisely check in particular the lift force model (2).
First results indicate that modifications of this model are required.
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4. Conclusions

In conclusion, we can say that the force models of section 2 are consistent with our present
experimental results. However, experiments on bubbles in the horizontal rotating cylinder
are still ongoing. Of all experiments shown/suggested here, they potentially have the highest
precision and, therefore, the potential for use in checking the expression (2) for the lift force.

The results on single bubbles have an important bearing on two-phase flow. The dynamics
of point-like bubbles in turbulent flow is often modelled by the equation [9–11]

dv

dt
= 3

DU

Dt
+

1

τb
(U(y(t), t) − v(t)) − 2g − (v(t) − U(y(t), t)) × ∇ × U(y(t), t), (10)

where τb = R2
B/6ν is the timescale of the bubble in viscous flow [12]. Relation (10) is a direct

consequence of the above force models with CM = CL = 1/2.
In [13] we have numerically shown that the dynamics (10), together with direct numerical

simulations of the Navier–Stokes equations, lead to a bubble accumulation in vortices, but
preferably on the downflow side. This is mainly an effect of the lift force and leads to a
reduced average bubble rise velocity in a turbulent flow. Another consequence—once a back-
reaction of the bubbles on the flow is allowed for—is a reduction of the downflow due to
buoyancy and thus an attenuation of the turbulence on large scales [13].
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